USP ESALQ - ASSESSORIA DE COMUNICAÇÃO

Veículo: Jornal de Piracicaba

Data: 11/07/2014

Caderno/Link: http://www.usp.br/agen/?p=180636

Assunto: Manejo de irrigação da soja combate déficit hídrico

Manejo de irrigação da soja combate déficit hídrico

Um estudo da Escola Superior de Agricultura Luiz de Queiroz (Esalq) da USP, em Piracicaba, investigou de que forma a irrigação pode ser manejada para que haja maior produtividade da cultura sem necessidade de aumentar a área de plantio. O engenheiro agrícola Ricardo Gava descobriu que, em certas fases do cultivo da soja, o fornecimento de água para as plantas pode ser diminuído sem afetar sua produtividade. Além disso, o manejo da irrigação com déficit pode gerar até lucro ao produtor, pois reduz a utilização de água e energia. "O Brasil é o segundo maior produtor mundial de soja, atrás dos Estados Unidos. E só não passou os norte-americanos na última safra devido a estiagem, comum nas áreas de plantio de soja do nosso país", afirma o pesquisador.

Fornecimento de água para soja pode ser diminuído sem afetar lucro do produtor A pesquisa buscou entender os efeitos do excesso e déficit de água tanto no ciclo total do cultivo (aproximadamente 120 dias), quanto nos seus sub-períodos: fase vegetativa, a floração, a do enchimento de grãos e a de maturação. Em um ambiente protegido com cobertura para controle de chuvas, foram testados diversos níveis de irrigação. As plantas-controle eram irrigadas plenamente, com 100% da quantidade de água que utilizam em seu processo de evapotranspiração (ETc). Já outras foram irrigadas em excesso, com 150% da ETc. Aquelas que tiveram déficit moderado receberam apenas 50% da ETc, e as com déficit severo, apenas 30%.

Os resultados mostraram que, em solo arenoso, as plantas que sofreram déficit hídrico severo durante todo o ciclo tiveram redução de 60% na produtividade. Já a soja que recebeu água em déficit moderado foi 40% menos produtiva em relação às plantas-controle. A pesquisa descobriu que, se o déficit severo ocorrer apenas na fase da floração ou apenas no enchimento de grãos, que são consideradas determinantes para a produtividade da cultura, a redução da produção pode chegar a 30%. O déficit moderado, por sua vez, se ocorrer apenas no enchimento de grãos, apresenta redução de 20% da produtividade da cultura.

"Muitas vezes, a irrigação plena é a que gera a maior produtividade da cultura, porém não necessariamente o maior lucro, porque você pode manejar o déficit hídrico em algumas fases e reduzir seu custo de bombeamento de água, sem causar reduções significativas na produção", conta Gava. O estudo buscou entender os efeitos do estresse hídrico para a soja, que é causado também pelo excesso de água. "Em algumas regiões, o excesso de água também prejudica", conta o engenheiro. No entanto, para o solo estudado, a irrigação em excesso, simulando regiões chuvosas, não foi prejudicial para a soja. Estas plantas, inclusive, obtiveram as maiores médias de produtividade entre todas as outras. Irrigação como insumo agrícola

"A irrigação é muitas vezes vista como vilã porque utiliza grandes volumes de água, mas deve ser vista como um dos mais eficazes insumos agrícolas, pois é a única que consegue dobrar ou até triplicar a produtividade das áreas cultivadas", isso pode contribuir para aumentar a produtividade sem tanta necessidade de expansão de áreas agrícolas, o que pode inclusive contribuir para frear os desmatamentos, "é o que chamamos de aumento vertical da agricultura", explica Gava, que diz ainda que "investir em irrigação é também uma forma de seguro agrícola, pois garante a produção mesmo em anos atípicos". O engenheiro conta que "cerca de 12% da área agrícola mundial é irrigada, e o Brasil irriga apenas 7,4% de sua área agrícola" e completa: "se nós aumentarmos as nossas áreas irrigadas para a média mundial, isso representaria um aumento exponencial na produção, pois apenas os 12% de área irrigados no mundo, são responsáveis por quase metade da produção mundial de alimentos". Seu orientador, o professor José Antônio Frizzone, coordena o Instituto Nacional de Ciência e Tecnologia de Engenharia de Irrigação – INCT-EI. Gava defendeu sua tese de doutorado Os efeitos do estresse hídrico na cultura da soja (Glycine Max, (L.) Merrill.) no final de junho, na Esalq.